

 \times

×

 \mathbf{x}

RSE2107A - Lecture 7

Computer vision and OpenCV

×

 \sum

 \times

Computer Vision 01

OpenCV 02

Vision-based Robot Control

- Using feedback information from vision sensors (visual feedback) to operate and control the motion of a robot
	- i.e. Cameras

Vision-based Robot Control

- **Image Processing (Computer Vision)**
	- detect road lane marking and calculate lateral distance from vehicle C.G and center line of road
	- Control System (PID Controller)
		- o used to keep vehicle in the centre of the lane

 \times

 $\overline{}$

\sum

Computer Vision

Basic Element

×

 \sim

Х

Scene

 $\sqrt{2}$

What is it?

- Computer vision is a field of AI which enables computers and systems to derive meaning information from digital inputs
	- automating human visual processes
	- information processing

2D Computer Vision

- Uses digital camera to capture image of an object
	- 2 dimensional map (X, Y) of reflected intensity is captured and processed
	- Processing normally consist of comparing variations in intensity(contrast) of image

 \sqrt{W} eston Robot

3D Computer Vision

- Captures depth of target using scanning technologies like Triangulation (using laser signals) or Time of Flight (LiDAR)
	- Outputs a point cloud, which is a digitized model of the shape and location of the object(s)
		- Can stitch together point clouds from multiple scanners for digitizing large and complex objects3D camera

 \sqrt{W} eston Robot

Mono vs Stereo Camera

×

Characteristics of Colour

Hue

- Dominant colour or the name of the colour itself
	- Yellow, Red, Green, etc
- **Saturation/Chroma**
	- Pureness of colour or the dominance of the hue in the colour
		- Intense vs Dull
- **Brightness/Value**
	- How bright or illuminated the colour is
		- Black vs White, Dark vs Light

Weston Robot

X

Weston Robot

RGB

○ Colours represented by adding combination of the 3 primary colours (Red, Green, Blue) Full intensity: 255; Zero intensity: 0 ● e.g. White: RGB(255,255,255), Black: RGB(0,0,0)

○ Used as default colour space in OpenCV to *display* image

 $\sqrt{2}$

BGR

- In reverse of RGB format, with no adverse effect on colour vibrancy and accuracy
- Used as default colour space in OpenCV to *store* image

Colour Spaces

- **HSV & HSL**
	- Cylindrical representation of colours
		- **Hue: 0 ~ 360 (Starts and end with Red)**
		- **Saturation: 0 (No saturation) ~ 1 (Full Saturation)**
		- **Value/Lightness: 0 (No light, Black) ~ 1 (White)**
			- At full saturation, $V = 1$ (HSV), but $L = 0.5$ (HSL)

 γ Weston Robot

Typical application

- **Factory Automation**
	- Vision Guided Robotics
- **Optical Character Recognition**
	- Reading Licence Plates
- **Biometrics**
	- Face detection & recognition

Weston Robot

Typical application

- **Security**
	- Object detection & tracking
- **Autonomous Navigation**
	- Driverless car
	- Space Exploration

 \sim Weston Robot

 \times

Now we will take a look at the software that we will be using for implementing Computer Vision

 \times

What is it?

Weston Robot

X

- OpenCV is an open source computer vision and machine learning software library
	- Contains many algorithms that can be used for
		- Face detection and recognition
		- Identifying objects
		- Tracking moving objects
		- and many more functionalities

 \times

×

×

Now that we have all these image and data processed, how are we going to use these data to control our robot?

Vision-based Robot Control

- \curvearrowright Image Processing (Computer Vision)
	- detect road lane marking and calculate lateral distance from vehicle C.G and center line of road
	- Control System (PID Controller)

X

○ used to keep vehicle in the centre of the lane

Control Systems types

- **Open Loop Control System**
	- Acts completely on the basis of the input, where the output has no effect on the control system
	- Only useful when output rarely changes and process is erratic
	- **Closed Loop Control System**
		- Takes in the current output of the system and alters it to fit its desired condition
		- Advantages

×

■ Automatic corrections to process disturbances

 \sim Weston Robot

X

 \sum

 \times

PID Control (Closed Loop Control System)

X

PID application

 \sim

Feedback Control

- **Bang Bang Control**
	- Mechanically or electronically turns something on or off when desired target (setpoint) has been reached
		- Eg. If car is too far left from a target point (eg. a line), it turns right, and vice-versa
		- Issues with this form of control:
			- Small error results in extreme control signal

Weston Robot

X

Feedback Control

PID Control

 \sim

- Most common form of feedback control
- Advantages:
	- Simple
	- Efficient
	- Effective

 \sqrt{W} eston Robot

X

Proportional Control

- Control signal is proportional to the error \circ Proportional Term $P \cdot e_{P}$
	- Controller gain = P
		- **Low P value: Oscillate**
		- Higher P value: Better performance
		- Too high P value: Leads to instability due to large offset (overshoot desired setpoint)
	- $Error = e_{p}$
		- How far vehicle is from the desired path

×

 \times

However, it is not enough as vehicle may consistently overshoot its desired path (Causing oscillation along path)

Differential Control

- Control signal is proportional to change of error
	- **O** Derivative Term $D \cdot e_{D}$
		- Controller gain $= D$

- Low D: Underdamp (Oscillation is still present)
- High D: Overdamp (Take too long to reach steady-state)
- Good D value: Result in critical damping (reach setpoint in the fastest time possible)
- Error rate of occurrence = e_D
	- How fast vehicle is moving in perpendicular distance w.r.t. to desired path

×

But what if there is external factors that causes changes to the vehicle's nominal behaviour?

Integral Control

- Control signal is proportional to cumulative error \circ Integral Term $I \cdot e_{I}$
	- Controller Gain = I

- Low I value: Take too long to resolve error
- High I value: Unstable
- Good I value: Can quickly correct misalignment and get back on its desired path
- Integral of error $= e_i$
	- Sum of all errors from the last stable state

PID Control

X

 \sim \bullet Steering Angle of vehicle

X

**This value does not include direction, it just gives the angle that robot is supposed to turn.

Conclusion

×

- Computer vision enables the robot to process data obtained from its various visual sensors
- PID controller uses the data obtained to determine how the robot should adjust itself towards the path that it desires to follow

